

Dachau

Garching

The far side - the gamma-H2AX Focus Assay

Harry Scherthan

Bundeswehr Institute of Radiobiology affiliated to the Univ. of Ulm, D-80937 Munich, Germany

scherth@web.de

DNA double-strand breaks (DSBs) are a severe threat to genomic integrity

DSBs result from ionizing radiation and radiomimetic drugs

- Arise physiologically during DNA replication
- Are delivered as initiator of physiological recombination in processes like V(D)J recombination & Meiosis.

Physiological DSBs & γ H2AX in mammalian meiosis

DNA damage response - DDR

Histone H2A.X in chromatin context

Kinner et al (2008), Nucleic Acids Res. 36:5678-94

yH2AX forms a chromatin domain @ a DSB

Scully & Xie MR 2013

IR-induced DSBs & repair pathway choice

NHEJ protects premeiotic stem cells and meiosis from accumulation of DNA damage Ku70^{-/-} spermatogenesis

MEIOSIS: homol. recombination DSB repair during prophase I

conversion or crossover

Meiosis: IR-induced DSBs can modulate chromatin phosphorylation & prophase I progression in cells without physiol. DSBs (Spo11-/-)

Spo11^{+/+} γH2AX

(no DSBs)

γH2AX SCP3 Liebe et al. 2006 ECR

Human meiosis: DNA repair and yH2AX

 \bigcirc pachytene

 δ pachytene

XY body

\bigcirc SCP1, γ -H2AX, DNA

 \bigcirc γ -H2AX, RPA

Roig et al. 2004, Chromosoma

IR induces chromatin & DNA damage

γH2AX DNA Kinetochore

Low LET

γ<mark>H2AX</mark> DNA Rad51 (DSBs)

high LET

γH2AX focus enumeration for monitoring ionizing radiation exposure

⇒ Method for quick detection of radiation-induced damage: DNA-repair focus test

Rogakou et al. 1999, JCB

Sedelnikova et al. 2002 RR Rothkamm & Löbrich 2003 PNAS

 IR-induced DSBs – ATM & DNAPKcs kinases phosphorylate the histone 2 variant H2A.X within minutes around the site of a DSB to result in γ-H2AX foci in the nucleus (Rogakou et al. 1998)

Repair half-time in the order of min -hours

In non-cycling tissue cells (e.g. skin) some DSBs (complex DNA damage) may persist for days/weeks

! Absence of dephosphorylation can lead to focus persistence wo DSB

Irradiation: HR repair factors colocalize at DSBs

METHOD - in vitro blood irradiation

- 1. Blood sampling
- 2. Leukocyte isolation
- 3. Fixation (store & transport [?])
- 4. Immunofluorescence staining
- 5. Analysis

Focus Assay - Staining

Most labs: immediate staining after IR & incubation / blood cell isolation

- 1) Bring the cells to a me-silane coated glass slide (cytocentrifuge; drying).
- 2) Fix with (1%-) 3.7% formaldehyde (!)
- 3) Extract with TritonX100
- 4) add primary antibody \Rightarrow detection

Sample storage ? - yes (but) !

Ethanol fixed cells can be stored and shipped

- ! only compare with similarly treated (time & temp) controls.

We use 70% Ethanol @ -20°C (Lassman et al. 2010 Nucl.Med.)

Methodological pitfalls: Fixation/extraction determines the success of γ-H2AX detection

kinetochores γ-H2AX

Replicating cells display classes of foci

Apoptotic cells display strong γH2AX fluorescence

Another source of background: granulocyte autofluorescence

γ-H2AX Focus assay: IF

Research: Enumerate (manually) foci numbers in 40 positive cells, or in up to 800 negative cells (Rothkamm & Löbrich 2003; & others) Rapid diagnosis: enumerate (50) - 100 cells (Multibiodose)

$\label{eq:gamma-star} \begin{array}{l} \gamma H2AX \ fpc \ linearly \ correlate \\ with \ doses < 2Gy \ (30 \text{min pIR, fibroblasts}) \end{array}$

Fig. 2. DSB induction in MRC-5 cells. γ -H2AX foci were counted 3 min after irradiation, and the mean values of foci per cell are shown (circles). Triangles represent DSB induction data obtained from PFGE analysis. The line is a linear fit to the data points with a slope of 35 DSBs per cell per Gy.

- Rothkamm and Lobrich 2003 PNAS: ~40 γH2AX foci at 5' /1Gy;
 ~7foci @ 0.2Gy (35DSB/Gy) fibroblasts
- Lobrich 2005 PNAS: ~20 yH2AX foci/lymphocyte

Direct visualization of IR-induced DSBs lessons from yeast (3'-end labeling)

40DSBs @1Gy in human ≈ 40 DSBs @ 200Gy in yeast nuclei

DNA-Repair Foci in Leukocytes: sensitive, but rapidly declining marker of IR exposure

Genetic background influences RIF formation – effects of NBS1 or ATM deficiencies

All cell lines that lack ATM or NBS1 fail to induce the full level (\geq 30) of γ H2AX or 53BP1 foci

15' after 1Gy IR.

Control

Senescent cells contain increasing # of persistent yH2AX foci

Pittfalls:

- Tissues with endogenous DNA damage, such as testis, lymph nodes
- aging cells
- replicating cells

% focus-free cells av. focus # in +cells

The fraction of cells with γH2AX foci 24h after IR correlates with clonogenic survival

Wéra et al. Rad Res. 2013 Menegakis et al. IJRB 2009

Variability in manual analysis

InstRadBioBw

Analysis / semi-automated image capture and processing

- motorized mic
- motorized slide table
- e.g., MetaSystems fluor. imaging sys.

Computer aided focus analysis

Single cell
 analysis

Data output

Automated scanning & image analysis – not so variable?

Dosisbereich 0,5 bis 3 Gy:

10 15 20 25 30 35 40 45 50

0 5

InstRadBioBw

Reagent-induced variation

different secondary Abs -> variation

Consequence: standardize your staining protocol, run positive & negative controls

In vivo: repair focus formation in PBL after thyroid cancer therapy with I-131

• M. Lassmann, Clinic of Nuclear Medicine, Univ. of Würzburg, GER

DTC: Lymph node & thyroid rest treatment by ablation w 3,7 GBq I-131

DTC treatment scheme

Lassmann et al. 2010 J.Nucl. Med. Eberlein, Lassmann & Scherthan, in prep.

Dosimetry - absorbed dose to the blood

Mean specific absorbed dose to the blood: 0.105±0.067 Gy/GBq (25 Pat.)

Mean absorbed dose to the blood: 0.39 ± 0.40 Gy, range 0.2 - 2 Gy

Good correlation of γH2AX & 53BP1 repair foci

Focus analysis among DTC patients treated with ~3.5 GBq I-131: high inter-individual variability

Time after Administration of I-131 / h

Correlation foci / physical dosimetry

RIT: increased foci numbers at low dose rate

γH2AX Foci post RIT (~3,7MBq 131-I)

Dosisrate

120

内

96

Calibration of the Focus assay for radionuclide incorporation

- Monte Carlo simulation of decay and dose built up according to the volume & geometry of the vials to realize doses to the blood (0-95mGy)
- ▶ 3 healthy individuals; 7 experiments: with I-131 (4) and with Lu-177 (2+1)
- Activity in I-131/Lu-177 aliquot measured by germanium detector
- Blood samples (3,5ml) partitioned to different tubes + 1ml NaCl diluted radioactive solution
- Incubation for 1h at 37°C under mixing
- Sample preparation as published (Lassmann et al. 2010, NucMed)
- Mic analysis of γH2AX+53BP1 FPC

In vitro calibration of fpc yield and absorbed dose to the blood after in solution exposure to ¹⁷⁷Lu und ¹³¹I radionuclides

(Cooperation w M. Lassmann, Nuclear Medicine WÜ University, DE)

FPC calibration curve of 1h ¹³¹I, ¹⁷⁷Lu radionuclidetreated PBL samples

Eberlein et al. 2015, PloSOne

Partial body, acute high dose γ-irradiation: Focus yield in skin & blood cells

High dose rate IR - 50Gy y-IR doesn't saturate the DDR

No correlation of foci # in skin & blood after 50Gy partial body γ -irradiation

InstRadBioBw / CRSSA, F

High dose rate partial body y-IR doesn't saturate the DDR

High dose & dose rate partial body y-IR: Appearance of pan-yH2AX nuclei indicates PBI early after the exposure

How many breaks/focus? Error prone repair in foci @ high doses?

High doses of IR induce more DSBs than Foci

Growing # of DSBs / Repair Foci with 7 Dose ⇒ probability of misrepair \$

*Ward 1991 Scherthan et al. 2008

IR w high doses /dose rates

of Chromosome aberrationsMeasure for misrepair

mFISH analysis: translocation yield in lymphocytes

24 human chromosomes in different colors \Rightarrow translocations rates as a measure of misrepair

Minimal Number of (misrepaired) Breaks (MNB) for this cell: 3

Scherthan et al. 2008, BBRC

High doses of X irradiation cause accumulation of DSBs in repair foci \Rightarrow increased translocation yield (misrepair)

Dose (Gy)	Foci # 0,5 h post IR	2 h	MNB / induced focus ^a	maxim. break # / focus
0.5	4.15 ±0.4	4.07 ±0.4	0.072	4,8
1	9.31 ±1.1	5.84 ±1.1	0.070	4,3
3	16.8 ±2.3	10.8 ±1.9	0.26	7,1

(±): standard error of the mean. ^a based on the 30 min value; MNB from Sky data.

Conclusions

DNA Repair occurs in foci ("factories")

 Not always a linear dose relationship
 high inter-individual variation
 DSB No. / focus increases with dose
 ⇒ source of mutation and complex exchanges. Low dose effects

Conclusions

DSB Repair (yH2AX) Foci

- High sensitivity
 - Good indicator of WB exposure, dose reconstruction difficult
 - High inter-individual variability. Rapid decline
 - Residual damage (>24h) can correlate with radiation sensitivity. In skin indicates IR for weeks
 - Problematic for dose reconstruction after partial body exposure

People involved

<u>Inst. für Radiobiologie Bw</u> Harry Scherthan Gerrit Schrock Michael Peper Emad A. Ahmed <u>Helmholtz Zentrum München (mFISH)</u>
 Ludwig Hieber, Herbert Braselmann,
 Horst Zitzelsberger

<u>Nuclear Medicine Univ. Würzburg</u>
 Michael Laßmann
 Uta Eberlein

IRBA, Bretigny sur Orge, F (minipigs) Michel Drouet Fabien Forcheron

Thank you

"... and stay away from scientists - they cause cancer"